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Risk Aggregation and Diversification

e A key issue in capital adequacy and solvency is to aggregate
risks (by summing capital requirements?) and potentially
account for diversification (to reduce the total capital?)
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Risk Aggregation and Diversification

e A key issue in capital adequacy and solvency is to aggregate
risks (by summing capital requirements?) and potentially
account for diversification (to reduce the total capital?)

e Using the standard deviation to measure the risk of
aggregating Xj and X with standard deviation std(X;),

std(X) + Xo) = \/std(X0)? + std(Xa)? + 2pstd(Xy)std(X2)
If p <1, there are “diversification benefits”:

std(X1 + X2) < std(X1) + std(Xz2)
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Risk Aggregation and Diversification

e A key issue in capital adequacy and solvency is to aggregate
risks (by summing capital requirements?) and potentially
account for diversification (to reduce the total capital?)

e Using the standard deviation to measure the risk of
aggregating Xj and X with standard deviation std(X;),

std(X) + Xo) = \/std(X0)? + std(Xa)? + 2pstd(Xy)std(X2)
If p <1, there are “diversification benefits”:
std(X1 + X2) < std(X1) + std(Xz2)

e This is not the case for instance for Value-at-Risk.
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Risk Aggregation and Diversification

e Basel Il, Solvency Il, Swiss Solvency Test, US Risk Based
Capital, Canadian Minimum Continuing Capital and Surplus
Requirements (MCCSR): all recognize partially the benefits of
diversification and aggregating risks may decrease the overall
capital.

Carole Bernard Assessing Model Risk in High Dimensions



Model Risk Bounds on variance Dependence Info. VaR  VaR bounds Dependence Info Constraint Conclusions
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e Basel Il, Solvency Il, Swiss Solvency Test, US Risk Based
Capital, Canadian Minimum Continuing Capital and Surplus
Requirements (MCCSR): all recognize partially the benefits of
diversification and aggregating risks may decrease the overall
capital.

e But they also recognize the difficulty to find an adequate
model to aggregate risks.
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Risk Aggregation and Diversification

e Basel Il, Solvency Il, Swiss Solvency Test, US Risk Based
Capital, Canadian Minimum Continuing Capital and Surplus
Requirements (MCCSR): all recognize partially the benefits of
diversification and aggregating risks may decrease the overall
capital.

e But they also recognize the difficulty to find an adequate
model to aggregate risks.

» Var-covar approach based on a correlation matrix: correlation
is a poor measure of dependence, issue with micro-correlation,
correlation 0 does not mean independence, problem of tail
dependence, correlation is a measure of linear dependence.

» Copula approach, vine models... : very flexible but prone to
model risk

» Scenario based approach, including identifying common risk
factors and incorporate what you know in the model.
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Objectives and Findings

e Model uncertainty on the risk assessment of an aggregate
portfolio: the sum of d dependent risks.

» Given all information available in the market, what can we say
about the maximum and minimum possible values of a given
risk measure of a portfolio?

e A non-parametric method based on the data at hand.

e Analytical expressions for the maximum and minimum
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Objectives and Findings

Model uncertainty on the risk assessment of an aggregate
portfolio: the sum of d dependent risks.

» Given all information available in the market, what can we say
about the maximum and minimum possible values of a given
risk measure of a portfolio?

e A non-parametric method based on the data at hand.

Analytical expressions for the maximum and minimum

Implications:

» Current VaR based regulation is subject to high model risk,
even if one knows the multivariate distribution “almost
completely”.

» We can identify for which risk measures it is meaningful to
develop accurate multivariate models.
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Model Risk

Goal: Assess the risk of a portfolio sum S = 27:1 X;.
Choose a risk measure p(-): variance, Value-at-Risk...

“Fit" a multivariate distribution for (X1, X2, ..., X4) and
compute p(S)

How about model risk? How wrong can we be?
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Model Risk

@ Goal: Assess the risk of a portfolio sum S = 27:1 X;.
@ Choose a risk measure p(-): variance, Value-at-Risk...
o

“Fit" a multivariate distribution for (X1, X2, ..., X4) and
compute p(S)

@ How about model risk? How wrong can we be?

Assume p(S) = var(S),

d d
pj_- ‘= sup q var ZX,- ,  pr:=infqvar ZX,-
i=1 i=1

where the bounds are taken over all other (joint distributions of)
random vectors (X1, X, ..., Xy) that “agree” with the available
information F
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Assessing Model Risk on Dependence with d Risks

» Marginals known:

» Dependence fully unknown

» In two dimensions d = 2, assessing model risk on variance is
linked to the Fréchet-Hoeffding bounds or “extreme
dependence”.

var(F{ Y (U)4+F5 H(1-U)) < var(Xi4+-X2) < var(F{H(U)+F, 1 (U))

» A challenging problem in d > 3 dimensions

e Puccetti and Riischendorf (2012): algorithm (RA) useful to
approximate the minimum variance.

e Embrechts, Puccetti, Riischendorf (2013): algorithm (RA) to
find bounds on VaR

> Issues
e bounds are generally very wide
e ignore all information on dependence.
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Assessing Model Risk on Dependence with d Risks

Marginals known:

Dependence fully unknown

In two dimensions d = 2, assessing model risk on variance is
linked to the Fréchet-Hoeffding bounds or “extreme
dependence”.

var(F{ Y (U)4+F5 H(1-U)) < var(Xi4+-X2) < var(F{H(U)+F, 1 (U))

A challenging problem in d > 3 dimensions
e Puccetti and Riischendorf (2012): algorithm (RA) useful to
approximate the minimum variance.
e Embrechts, Puccetti, Riischendorf (2013): algorithm (RA) to
find bounds on VaR
Issues
e bounds are generally very wide
e ignore all information on dependence.

» Our answer:

e incorporating in a natural way dependence information.
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Rearrangement Algorithm

N = 4 observations of d = 3 variables: X1, X5, X3

O O =
w o o=
- O W I

Each column: marginal distribution
Interaction among columns: dependence among the risks
Carole Bernard Assessing Model Risk in High Dimensions 7



Model Risk Bounds on variance Dependence Info. VaR  VaR bounds Dependence Info. Constraint Conclusions

Same marginals, different dependence = Effect on the sum!

X1+ Xo + X3

1 1 2 4
0O 6 3 9
4 0 O SN_4
6 3 4 13

X1+ Xo + X3

6 6 4 16
4 3 3 10
1 1 2 Sy = 3
0 0 O 0

Aggregate Risk with Maximum Variance

comonotonic scenario

Carole Bernard Assessing Model Risk in High Dimensions 8
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Rearrangement Algorithm: Sum with Minimum Variance

minimum variance with d = 2 risks X; and X5

Antimonotonicity: var(Xj + X2) < var(Xy + X3)

How about in d dimensions?

Carole Bernard Assessing Model Risk in High Dimensions 9
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Rearrangement Algorithm: Sum with Minimum Variance

minimum variance with d = 2 risks X; and X5

Antimonotonicity: var(Xj + Xz) < var(X1 + X3)

How about in d dimensions?
Use of the rearrangement algorithm on the original matrix M.

Aggregate Risk with Minimum Variance

» Columns of M are rearranged such that they become
anti-monotonic with the sum of all other columns.

Vk € {1,2,...,d}, X} antimonotonic with > _ X;
J#k

» After each step, var (Xﬁ + Zﬁék XJ> < var (Xk + Z#k XJ)
where X{ is antimonotonic with Z#,(Xj

v

Carole Bernard Assessing Model Risk in High Dimensions 9
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Aggregate risk with minimum variance
Step 1: First column

becomes

S == O
O = L D
O = DO >

Carole Bernard Assessing Model Risk in High Dimensions 10
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Aggregate risk with minimum variance

[ 6 6 4] 10 [0 6 47
4 3 2 5 becomes 1 3 2
1 1 1 2 4 1 1

| O O O | 0 | 6 0 O |

4 X, + X3

[0 6 4 4 [0 3 47
1 3 2 3 becomes 1 6 2
4 1 1 5 4 1 1

| 6 0 O | 6 . 6 0 O |

1 X+ Xo

[0 3 4] 3 [0 3 4]
1 6 2 7 becomes 1 6 O
4 1 1 5 4 1 2

| 6 0 O | 6 | 6 0 1 |
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Aggregate risk with minimum variance

Each column is antimonotonic with the sum of the others:

} Xy + X3 ¥ Xi+4X X+
03 4 7 03 4 4 03 4 3
160 6 , 160 1 160 7
41 2 3 41 2 6 41 2 5
6 01 1 6 01 7 6 01 6
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Aggregate risk with minimum variance

Each column is antimonotonic with the sum of the others:

} Xy + X3 } Xi+4X X+
03 4 7 03 4 4 03 4 3
160 6 , 160 1 160 7
41 2 3 41 2 6 41 2 5
6 01 1 6 01 7 6 01 6
X1+ Xo + X3

0O 3 4 7

1 6 O 7

4 1 2 SN = | 7

6 0 1 7

The minimum variance of the sum is equal to 0! (ideal case of a
constant sum (complete mixability, see Wang and Wang (2011))
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Bounds on variance

Analytical Bounds on Standard Deviation

Consider d risks X; with standard deviation o;

Ogstd(X1+X2~|—...+Xd)<01+02~|—...—|—ad

Carole Bernard Assessing Model Risk in High Dimensions 13
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Bounds on variance

Analytical Bounds on Standard Deviation

Consider d risks X; with standard deviation o;

Ogstd(X1+X2~|—...+Xd)<01+02~|—...—|—ad

Example with 20 standard normal N(0,1)
0< Std(Xl + X0+ ...+ X20) <20

and in this case, both bounds are sharp but too wide for practical
use!
Our idea: Incorporate information on dependence.

Carole Bernard Assessing Model Risk in High Dimensions 13
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lllustration with 2 risks with marginals N(0,1)
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lllustration with 2 risks with marginals N(0,1)
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Assumption: Independence on F = m {98 < Xk < q1-3}
k=1
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lllustration with marginals N(0,1)
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Model Risk

Bounds on variance  Dependence Info.

Dependence Info.

lllustration with marginals N(0,1)
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lllustration with marginals N(0,1)

2 2

Fir={{as < Xk < q1_5} F = U {X > qp}U]:l
k=1
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lllustration with marginals N(0,1)

2

F1 =contour of MVN at 3 F = U {Xk > qp} U]:l
k=1
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Our assumptions on the cdf of (X1, X2, ..., Xy)

F C RY (“trusted” or “fixed” area)
U =RI\F (“untrusted").
We assume that we know:

(i) the marginal distribution F; of X; on R for i =1,2,...,d,
(ii) the distribution of (X1, X2, ..., Xg) | {(X1, X2, ..., X4) € F}.
(iii) P ((Xl,Xg, ...,Xd) S ]'-)

Carole Bernard Assessing Model Risk in High Dimensions 20
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Our assumptions on the cdf of (X1, X2, ..., Xy)

F C RY (“trusted” or “fixed” area)
U =RI\F (“untrusted”).
We assume that we know:

(i) the marginal distribution F; of X; on R for i =1,2,...,d,
(i) the distribution of (X1, X2, ..., Xg) | {(X1, X2, ..., Xg) € F}.
(iii) P ((Xl,Xg, ...,Xd) S ]'-)

» When only marginals are known: &/ = RY and F = (.

» Our Goal: Find bounds on var(S) := var(X; + ... + Xy)
when (X1, ..., Xy) satisfy (i), (ii) and (iii).

Carole Bernard Assessing Model Risk in High Dimensions 20
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Example:

N = 8 observations, d = 3 dimensions
and 3 observations trusted (¢/f = 3, pr = 3/8)

SN =

=W OO -~ W
N = OB DN WK
W NN ==
O B~ 00 W UL W o

Carole Bernard Assessing Model Risk in High Dimensions 21



Model Risk Bounds on variance Dependence Info. VaR  VaR bounds Dependence Info. Constraint Conclusions

Example: N =8, d = 3 with 3 observations trusted (/; = 3)
Maximum variance

3 4 1

2 4 2 0

02 1

433 8 7
M= L oSl=181, Sy=| 4

3 2 2 3 3

1 1 2 1

111

00 1

The maX|mum varlance is
b (XLalsi =52+ S0 (5 — 5)?) ~ 875 with 5 = 5.5,

Carole Bernard Assessing Model Risk in High Dimensions 22
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Example: N =8, d =3 with 3 observations trusted (¢ = 3)
Minimum variance

Minimum variance obtained when Sy has smallest variance (ideally
constant, “mixability”)

3 4 1
2 4 2
0 2 1 o
1 1 3 I S o
1 2 2 5
3 1 1
40 1

The minimum variance is
: (Z?:l(s" =52+ (5 - 5)2) ~ 2.5 with § = 5.5.

Carole Bernard Assessing Model Risk in High Dimensions 23
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Example d = 20 risks N(0,1)

» (Xi,...,X20) independent N(0,1) on
F = [qﬁ, qlf/g]d C Rd pr = P((Xl, ...,XQO) S .F)

(for some 3 < 50%) where g,: y-quantile of N(0,1)
» = 0%: no uncertainty (20 independent N(0,1))
» 3 =50%: full uncertainty

U=90 U=R?
F=las, 151" | B=0% B =50%
p=0 447 (0, 20)

Carole Bernard Assessing Model Risk in High Dimensions 24
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Example d = 20 risks N(0,1)

» (Xi,...,X20) independent N(0,1) on
F = [qﬁ, qlf/g]d C Rd pr = P((Xl, ...,XQO) S .F)

(for some 3 < 50%) where g,: y-quantile of N(0,1)
» [ =0%: no uncertainty (20 independent N(0,1))
» 3 =50%: full uncertainty

U=0 | pr~98% pr ~ 82% U="R4
F=lgqp] | B=0%| B=005% | B=05% | B=50%
p=0 447 | (44 ,565) | (3.89,10.6) | (0, 20)

Model risk on the volatility of a portfolio is reduced a lot by
incorporating information on dependence!

Carole Bernard Assessing Model Risk in High Dimensions 25
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Bounds on Variance

Bounds on the variance of 27:1 Xi

Let (X1, X, ..., Xy) that satisfies properties (i), (i) and (iii) and let

=T x %, Xq)eF>
Zi ~ Fx(x1,%,....Xq)eu are comonotonic and independent of I for

i=1,2,..,d. Then, with S =7 X;,

d d
var ]I5+(1—]I)ZEZ,- <var(S) < var ]IS+(1—]I)ZZ,-

i=1 i=1

Carole Bernard Assessing Model Risk in High Dimensions 26
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Other Risk Measures

» Assess model risk for variance of a portfolio of risks with given
marginals but partially known dependence. Same method
applies to TVaR (expected Shortfall) or any risk measure that
satisfies convex order (but not for Value-at-Risk).

definition: Convex order

X is smaller in convex order, X <., Y, if for all convex functions f

E[f(X)] < E[f(Y)]

» Next, let us study model risk on Value-at-Risk.
e Maximum Value-at-Risk is not caused by the comonotonic
scenario.
e Maximum Value-at-Risk is achieved when the variance is
minimum in the tail. The RA is then used in the tails only.
e Bounds on Value-at-Risk at high confidence level stay wide
even when the trusted area covers 98% of the space!

Carole Bernard Assessing Model Risk in High Dimensions 27
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Setting

e Model uncertainty on the VaR of an aggregate portfolio: the
sum of d individual dependent risks.
» Value-at-Risk at level g of S = X; + X5 + ... + Xy
» “Fit" a multivariate distribution for (X1, Xz, ..., X4) and

compute VaRy(S)
» How about model risk? How wrong can we be?

d d
VaR} > =sup{ VaRy [ Y X | b, VaR » =infq VaRy [ D X;
=1 i=1

where bounds are taken over all other random vectors
(X1, X, ..., Xg) that “agree” with the available information

Carole Bernard Assessing Model Risk in High Dimensions 28
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Constraint
Definitions
¢ Value-at-Risk of X at level g € (0,1)
VaRgq (X) =inf{x € R | Fx(x) > q}
¢ Tail Value-at-Risk or Expected Shortfall of X
TVaR,( / VaR,( g€ (0,1)

e Left Tail Value-at-Risk of X

1 /9
LTVaRy(X) = q/ VaR,(X)du
0

Carole Bernard

Conclusions
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Bounds on Value-at-Risk

First part works for all risk measures that satisfy convex order...
But not for Value-at-Risk.

» VaRg is not maximized for the comonotonic scenario:
SC=X{+ X5+ ...+ X§

where all X are comonotonic.

> to maximize VaRg, the idea is to change the comonotonic
dependence such that the sum is constant in the tail

Carole Bernard Assessing Model Risk in High Dimensions
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Bounds on Value-at-Risk

First part works for all risk measures that satisfy convex order...
But not for Value-at-Risk.

» VaRg is not maximized for the comonotonic scenario:
SC=X{+ X5+ ...+ X§

where all X are comonotonic.

> to maximize VaRg, the idea is to change the comonotonic
dependence such that the sum is constant in the tail

Let us illustrate the problem with two risks:
If X1 and X3 are Uniform (0,1) and comonotonic, then

VaR,(5°) = 2q

Carole Bernard Assessing Model Risk in High Dimensions
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“Riskiest” Dependence Structure
maximum VaR at level g in 2 dimensions

For that dependence structure (antimonotonic in the tail)
VaR,(5") = 14 q > VaR,(5°) = 2q

Carole Bernard Assessing Model Risk in High Dimensions
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VaR at level g of the comonotonic sum w.r.t. g

A

VaR,(S9)

>

Carole Bernard Assessing Model Risk in High Dimensions 32
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VaR at level g of the comonotonic sum w.r.t. g

A

L L O /
/

VaR,(S¢)

> 5

Carole Bernard Assessing Model Risk in High Dimensions 33
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Riskiest Dependence Structure VaR at level g

A

§* =>VaR(S*) =TVaR(S°)?

VaR (se) |y

> p

Carole Bernard Assessing Model Risk in High Dimensions 34
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Analytical Unconstrained Bounds with Xj ~ F;

A = LTVaR,(5°) < VaRg [X1 4+ Xz + ... + Xs] < B = TVaR,(5°)

Carole Bernard Assessing Model Risk in High Dimensions 35
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lllustration (1/3)

8 0 3 Sum=11
10 1 4 Sum=15
1-q -
11 7 7 Sums= 25
12 8 9 Sum= 29

Carole Bernard Assessing Model Risk in High Dimensions 36
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lllustration (2/3)

Rearrange within
columns..to make the

sums as constant as
possible...

B=(11+15+25+29)/4=20

1-q -

Carole Bernard

8| 0 3 Sum=11
10| 1 4 Sum=15
11 | 7 7 | sum=25
12 | 8 9 | sum=29

Assessing Model Risk in High Dimensions
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lllustration (3/3)

1-q -

Carole Bernard

8| 8 4 Sum=20
10| 7 3 Sum=20
12 | 1 7 | sum=20
11| 0 9 | sum=20

Dependence Info Constraint Conclusions

Il
o

Assessing Model Risk in High Dimensions
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Numerical Results, 20 risks N(0,1)

When marginal distributions are given,
e What is the maximum Value-at-Risk?
e What is the minimum Value-at-Risk?

e A portfolio of 20 risks normally distributed N(0,1). Bounds on
VaR, (by the rearrangement algorithm applied on each tail)

g=95% | (-2.17,413) |
9=99.95% | (-0.035,71.1) |

» More examples in Embrechts, Puccetti, and Riischendorf
(2013): “Model uncertainty and VaR aggregation,” Journal of
Banking and Finance

» Very wide bounds

» All dependence information ignored

Our idea: add information on dependence from a fitted model

where data is available...
Carole Bernard Assessing Model Risk in High Dimensions 39
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lllustration with 2 risks with marginals N(0,1)

. T
3t ]
+
2 + +
+ +
N ft
1r t * ¥
ol #
MG ot +
ot K
w0 +
# H
+ o
IR o
_1 +
o +
o +
) ]
-3 ]
. .
-3 -2 3

Carole Bernard Assessing Model Risk in High Dimensions 40



Model Risk  Bounds on variance ~ Dependence Info. ~ VaR  VaR bounds  Dependence Info.  Constraint  Conclusions

lllustration with 2 risks with marginals N(0,1)
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Assumption: Independence on F = m {98 < Xk < q1-3}
k=1
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Our assumptions on the cdf of (Xi, Xz, ..., Xy)

F C RY (“trusted” or “fixed” area)
U =RI\F (“untrusted”).
We assume that we know:

(i) the marginal distribution F; of X; on R for i =1,2,...,d,
(i) the distribution of (X1, X2, ..., Xg) | {(X1, Xz, ..., X4) € F}.
(iii) P ((Xl,Xg, ...,Xd) S .F)

v

» Our Goal: Find bounds on VaR,(S) := VaR, (X1 +... 4+ Xq)
when (Xi, ..., Xy) satisfy (i), (ii) and (iii).
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Our assumptions on the cdf of (Xi, Xz, ..., Xy)

F C RY (“trusted” or “fixed” area)
U =RI\F (“untrusted”).
We assume that we know:

(i) the marginal distribution F; of X; on R for i =1,2,...,d,
(i) the distribution of (X1, X2, ..., Xg) | {(X1, Xz, ..., X4) € F}.
(iii) P ((Xl,Xg, ...,Xd) S .F)

v

» Our Goal: Find bounds on VaR,(S) := VaR, (X1 +... 4+ Xq)
when (Xi, ..., Xy) satisfy (i), (ii) and (iii).
In the paper entitled “"A New Approach to Assessing Model Risk in
High Dimensions” with S. Vanduffel,
e we adapt the rearrangement algorithm to solve for sharp
bounds on VaR in the above case.
e we provide theoretical expressions as the VaR of a mixture for
the lower and the upper bounds.
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Numerical Results, 20 independent N(0,1) on F = [gs, q1_5]¢

Uu=>0 U=R?
B=0% B =05
9=95% 125 (-217,413)
q=99.95% [ 251 | \ | (-0.035,71.1) |

e U = () : 20 independent standard normal variables.

VaRg5% =125 V3R99.95% =251
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Numerical Results, 20 independent N(0,1) on F = [g3, q1_5]¢

U=0 | pr=~98% pr ~ 82% U =Rq
B=0%| B=0.05% B=05% B =05
9=95% 125 | (122,133) | (107,27.7) | (-217,413)

q=99.95% | 25.1 [ (242,711)](215,71.1)[(-0.035,6711) |

e U = () : 20 independent standard normal variables.

VaR95% =125 VaR99.95% =251

» The risk for an underestimation of VaR is increasing in
the probability level used to assess the VaR.

» For VaR at high probability levels (g = 99.95%), despite
all the added information on dependence, the bounds
are still wide!
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VaR bounds

With Pareto risks

Dependence Info.

Constraint

Consider d = 20 risks distributed as Pareto with parameter 6 = 3.
e Assume we trust the independence conditional on being in F;

F1

d

k=1

where g5 = (1 — 8)7Y/% — 1.
Comonotonic estimates of Value-at-Risk
V3R95%(5C) ~ 343, V3R99_95%(5C) ~ 232

() {95 < Xk < q1—s}

U=10 U=R9

Fi B=0%| B=0.05% B=05% B=05
a=95% 166 | (16,184) | (13.8,37.4) | (7.29,614)
a=99.95% | 435 | (265,359) | (20.5,359) | (9.83, 359 )
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Incorporating Expert’s Judgements

Consider d = 20 risks distributed as Pareto 8 = 3.
e Assume comonotonicity conditional on being in F»

d

Fo=J X > qp}
k=1

Comonotonic estimates of Value-at-Risk
V3R95%(5C) ~ 3437 V8R99'95%(5C) ~ 232
Uu==0

T (Model) | p=99.5% | p=99.9% | p=99.95%
a=95% 166 | (835,50) | (7.47,56.7) | (7.38,583)
a=99.95% | 435 | (232,232) | (232,232) | (180,232)

Carole Bernard
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Bounds on variance

Dependence Info. VaR

Comparison

VaR bounds

Dependence Info.

Constraint

Independence within a rectangle 71 = ﬂgzl {98 < Xk < q1_3}

U=10 U=R4

2 B=0%| B=0.05% B =05% B=05
a=95% 166 | (16,184) | (138,37.4) | (7.29,614)
0=99.95% | 435 | (265,359) | (205,359) | (9.83,359)

Comonotonicity when one of the risks is large F» = |J?_; {Xk > g, }

U=10
o (Model) | p=99.5% p = 99.9% p = 99.95%
a=95% | 166 | (835,50) | (7.47,56.7) | (7.38,583)
a=99.05% | 435 | (232,232) | (232,232) | (180,232)

Carole Bernard
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Extension with a variance constraint
with L. Ruschendorf and S. Vanduffel

Problem

M :=sup VaRq [X1 + Xo + ... + Xj],
subject to Xj ~ Fj,var(Xq + Xo + ... + X,) < 52

e casy-to-compute upper and lower bounds for the portfolio VaR
with given marginal and possibly a maximum variance of the sum
is given.

e a practical algorithm to (approximate) sharp VaR bounds.

e Examples illustrate that the algorithm gives rise to VaR bounds
that are usually close to the simple theoretical bounds.

e A constraint on the variance can significantly tighten the
bounds without the variance constraint (unconstrained case).
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Analytical result

A and B: unconstrained bounds on Value-at-Risk, u = E[S].
2

Constrained Bounds with Xj ~ F; and variance < s

[1_—
azmax(A,,u—s qq)gvaRq[Xl_’_Xz"f_..._’_Xn]
—m q
ébmln(B,,u—i—s )
Vi-g

e If the variance s* is not “too large” (i.e. when

s < q(A—p)? + (1 — q)(B — p)?), then b < B.

e The “target” distribution for the sum: a two-point cdf that takes
two values a and b. We can write

X1+Xo04+...+X,—5=0
and apply the standard RA.
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Dependence Info. VaR bounds ~ Dependence Info.  Constraint ~ Conclusions
Extended RA
I eee eee eee -a
oo eee oo -a
-a Rearrange now
-a within all

columns such

1-q

-b that all sums
-b becomes close
to zero

12

11

Carole Bernard

Assessing Model Risk in High Dimensions 50



Model Risk Bounds on variance Dependence Info. VaR  VaR bounds Dependence Info Constraint Conclusions

Conclusions (1/2)

We have shown that

e Maximum Value-at-Risk is not caused by the comonotonic
scenario.

e Maximum Value-at-Risk is achieved when the variance is
minimum in the tail. The RA is then used in the tails only.

e Bounds on Value-at-Risk at high confidence level stay wide
even if the multivariate dependence is known in 98% of the
space!

Carole Bernard Assessing Model Risk in High Dimensions
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Conclusions (2/2)

» Assess model risk with partial information and given marginals
(Monte Carlo from fitted model or non-parametrically)

» Design algorithms for bounds on variance, TVaR and VaR and
many more risk measures.

» Challenges:

e How to choose the trusted area F optimally?
e Re-discretizing using the fitted marginal f; to increase N
e Amplify the tails of the marginals by re-discretizing with a

probability distortion
» Additional information on dependence can be incorporated
- expert opinions on the dependence under some scenarios
(amounts to fix the dependence in some areas).

- variance of the sum (work with Riischendorf and Vanduffel).
- higher moments (work with Denuit and Vanduffel)
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Bounds on VaR

Theorem (Constrained VaR Bounds for Zfl:l Xi)

Assume (X1, Xa, ..., Xy) satisfies properties (i), (ii) and (iii), and let
(Z1,22,...,24), L and U (~ U(0, 1) independent of 1) as defined
before. Define the variables L; and H; as
L,' = LTVaRU (Z,) and H,' = TVaRU (Z,)
and let
mp = VaRp (I, X+ (L - T, L)
Mp = VaR, (T2, Xi + (1= 1) S0 Hy)

Bounds on the Value-at-Risk are m, < VaR, (Z;j:l X,-) < M,

Carole Bernard Assessing Model Risk in High Dimensions 55



Model Risk Bounds on variance Dependence Info. VaR  VaR bounds Dependence Info Constraint Conclusions

Value-at-Risk of a Mixture

Lemma

Consider a sum S =1X+ (1 —1)Y, where I is a Bernoulli
distributed random variable with parameter ps and where the
components X and Y are independent of I. Define «, € [0,1] by

s {acy 3e0n { S0 om=e )

and let B, = ETP2= € [0,1]. Then, for p € (0,1),

VaR,(S) = max{VaR,,(X), VaRs, (Y)}

Applying this lemma, one can prove a more convenient expression
to compute the VaR bounds.
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Let us define T := FZ,—X,-|(X1,X2,...,Xd)ef(U)'

Theorem (Alternative formulation of the upper bound for VaR)

Assume (X1, Xa, ..., X4) satisfies properties (i), (ii) and (iii), and let
(Z1, 2>, ..., Zq) and 1 as defined before.

With oy = max{O, p+57:—1} and ci; = min {1, %},

a, = infSa € (ar,a2) | VaRy(T) = TVaRp—pa <Zd 1 Zi)}

1=
1—pf
—1
When PPl P
pr < < pr’

d
Mp = TVaRp—prax (Z Z,-)

e \iot

The lower bound m,, is obtained by replacing “TVaR" by “LTVaR".
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Algorithm to approximate sharp bounds

e A detailed algorithm to approximate sharp bounds is given in
the paper.

e An application to a portfolio of stocks using market data is
also fully developed.

Back to
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