Assessing Model Risk on Dependence in High Dimensions

Carole Bernard

based on joint work with Steven Vanduffel

 A key issue in capital adequacy and solvency is to aggregate risks (by summing capital requirements?) and potentially account for diversification (to reduce the total capital?)

- A key issue in capital adequacy and solvency is to aggregate risks (by summing capital requirements?) and potentially account for diversification (to reduce the total capital?)
- Using the standard deviation to measure the risk of aggregating X₁ and X₂ with standard deviation std(X_i),

$$std(X_1 + X_2) = \sqrt{std(X_1)^2 + std(X_2)^2 + 2\rho std(X_1)std(X_2)}$$

If ρ < 1, there are "diversification benefits":

$$std(X_1 + X_2) < std(X_1) + std(X_2)$$

- A key issue in capital adequacy and solvency is to aggregate risks (by summing capital requirements?) and potentially account for diversification (to reduce the total capital?)
- Using the standard deviation to measure the risk of aggregating X₁ and X₂ with standard deviation std(X_i),

$$std(X_1 + X_2) = \sqrt{std(X_1)^2 + std(X_2)^2 + 2\rho std(X_1)std(X_2)}$$

If $\rho <$ 1, there are "diversification benefits":

$$std(X_1 + X_2) < std(X_1) + std(X_2)$$

This is not the case for instance for Value-at-Risk.

Model Risk Bounds on variance Dependence Info. VaR VaR bounds Dependence Info. Constraint Conclusions

Risk Aggregation and Diversification

 Basel II, Solvency II, Swiss Solvency Test, US Risk Based Capital, Canadian Minimum Continuing Capital and Surplus Requirements (MCCSR): all recognize partially the benefits of diversification and aggregating risks may decrease the overall capital.

- Basel II, Solvency II, Swiss Solvency Test, US Risk Based Capital, Canadian Minimum Continuing Capital and Surplus Requirements (MCCSR): all recognize partially the benefits of diversification and aggregating risks may decrease the overall capital.
- But they also recognize the difficulty to find an adequate model to aggregate risks.

Model Risk Bounds on variance Dependence Info. VaR VaR bounds Dependence Info. Constraint Conclusion:

Risk Aggregation and Diversification

- Basel II, Solvency II, Swiss Solvency Test, US Risk Based Capital, Canadian Minimum Continuing Capital and Surplus Requirements (MCCSR): all recognize partially the benefits of diversification and aggregating risks may decrease the overall capital.
- But they also recognize the difficulty to find an adequate model to aggregate risks.
 - ▶ Var-covar approach based on a correlation matrix: correlation is a poor measure of dependence, issue with micro-correlation, correlation 0 does not mean independence, problem of tail dependence, correlation is a measure of linear dependence.
 - ► Copula approach, vine models... : very flexible but prone to model risk
 - ▶ Scenario based approach, including identifying common risk factors and incorporate what you know in the model.

Objectives and Findings

- Model uncertainty on the risk assessment of an aggregate portfolio: the sum of d dependent risks.
 - ▶ Given all information available in the market, what can we say about the maximum and minimum possible values of a given risk measure of a portfolio?
- A non-parametric method based on the data at hand.
- Analytical expressions for the maximum and minimum

Objectives and Findings

- Model uncertainty on the risk assessment of an aggregate portfolio: the sum of *d* dependent risks.
 - ▶ Given all information available in the market, what can we say about the maximum and minimum possible values of a given risk measure of a portfolio?
- A non-parametric method based on the data at hand.
- Analytical expressions for the maximum and minimum
- Implications:
 - Current VaR based regulation is subject to high model risk, even if one knows the multivariate distribution "almost completely".
 - ▶ We can identify for which risk measures it is meaningful to develop accurate multivariate models.

Model Risk

- **1** Goal: Assess the risk of a portfolio sum $S = \sum_{i=1}^{d} X_i$.
- **②** Choose a risk measure $\rho(\cdot)$: variance, Value-at-Risk...
- ullet "Fit" a multivariate distribution for $(X_1, X_2, ..., X_d)$ and compute $\rho(S)$
- How about model risk? How wrong can we be?

Model Risk

- **1** Goal: Assess the risk of a portfolio sum $S = \sum_{i=1}^{d} X_i$.
- **2** Choose a risk measure $\rho(\cdot)$: variance, Value-at-Risk...
- \bullet "Fit" a multivariate distribution for $(X_1, X_2, ..., X_d)$ and compute $\rho(S)$
- 4 How about model risk? How wrong can we be?

Assume $\rho(S) = var(S)$,

$$\rho_{\mathcal{F}}^+ := \sup \left\{ var\left(\sum_{i=1}^d X_i\right) \right\}, \quad \rho_{\mathcal{F}}^- := \inf \left\{ var\left(\sum_{i=1}^d X_i\right) \right\}$$

where the bounds are taken over all other (joint distributions of) random vectors $(X_1, X_2, ..., X_d)$ that "agree" with the available information \mathcal{F}

Assessing Model Risk on Dependence with d Risks

- ► Marginals known:
- Dependence fully unknown
- ▶ In two dimensions d = 2, assessing model risk on variance is linked to the Fréchet-Hoeffding bounds or "extreme dependence".

$$var(F_1^{-1}(U)+F_2^{-1}(1-U)) \leqslant var(X_1+X_2) \leqslant var(F_1^{-1}(U)+F_2^{-1}(U))$$

- ▶ A challenging problem in $d \ge 3$ dimensions
 - Puccetti and Rüschendorf (2012): algorithm (RA) useful to approximate the minimum variance.
 - Embrechts, Puccetti, Rüschendorf (2013): algorithm (RA) to find bounds on VaR

Issues

- bounds are generally very wide
- ignore all information on dependence.

Model Risk Bounds on variance Dependence Info. VaR VaR bounds Dependence Info. Constraint Conclusions

Assessing Model Risk on Dependence with d Risks

- ► Marginals known:
- Dependence fully unknown
- ▶ In two dimensions d = 2, assessing model risk on variance is linked to the Fréchet-Hoeffding bounds or "extreme dependence".

$$var(F_1^{-1}(U)+F_2^{-1}(1-U)) \leqslant var(X_1+X_2) \leqslant var(F_1^{-1}(U)+F_2^{-1}(U))$$

- ▶ A challenging problem in $d \ge 3$ dimensions
 - Puccetti and Rüschendorf (2012): algorithm (RA) useful to approximate the minimum variance.
 - Embrechts, Puccetti, Rüschendorf (2013): algorithm (RA) to find bounds on VaR

Issues

- bounds are generally very wide
- ignore all information on dependence.
- Our answer:
 - incorporating in a natural way dependence information.

Rearrangement Algorithm

$$N=4$$
 observations of $d=3$ variables: X_1 , X_2 , X_3

$$\mathbf{M} = \left[egin{array}{cccc} \mathbf{1} & \mathbf{1} & \mathbf{2} \ \mathbf{0} & \mathbf{6} & \mathbf{3} \ \mathbf{4} & \mathbf{0} & \mathbf{0} \ \mathbf{6} & \mathbf{3} & \mathbf{4} \end{array}
ight]$$

Each column: **marginal** distribution Interaction among columns: **dependence** among the risks

Same marginals, different dependence \Rightarrow Effect on the sum!

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 6 & 3 \\ 4 & 0 & 0 \\ 6 & 3 & 4 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{2} \\ \mathbf{0} & \mathbf{6} & \mathbf{3} \\ \mathbf{4} & \mathbf{0} & \mathbf{0} \\ \mathbf{6} & \mathbf{3} & \mathbf{4} \end{bmatrix} \qquad S_N = \begin{bmatrix} 4 \\ 9 \\ 4 \\ 13 \end{bmatrix}$$

$$\begin{bmatrix} 6 & 6 & 4 \\ 4 & 3 & 3 \\ 1 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{6} & \mathbf{6} & \mathbf{4} \\ \mathbf{4} & \mathbf{3} & \mathbf{3} \\ \mathbf{1} & \mathbf{1} & \mathbf{2} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix} \qquad S_N = \begin{bmatrix} 16 \\ 10 \\ 3 \\ 0 \end{bmatrix}$$

Aggregate Risk with Maximum Variance

comonotonic scenario

Rearrangement Algorithm: Sum with Minimum Variance

minimum variance with d = 2 risks X_1 and X_2

Antimonotonicity: $var(X_1^a + X_2) \leq var(X_1 + X_2)$

How about in d dimensions?

Rearrangement Algorithm: Sum with Minimum Variance

minimum variance with d=2 risks X_1 and X_2

Antimonotonicity: $var(X_1^a + X_2) \leq var(X_1 + X_2)$

How about in d dimensions?

Use of the rearrangement algorithm on the original matrix M.

Aggregate Risk with Minimum Variance

► Columns of *M* are rearranged such that they become anti-monotonic with the sum of all other columns.

$$\forall k \in \{1, 2, ..., d\}, \mathbf{X_k^a}$$
 antimonotonic with $\sum_{i \neq k} X_i$

▶ After each step, $var\left(\mathbf{X}_{k}^{a} + \sum_{j \neq k} X_{j}\right) \leqslant var\left(\mathbf{X}_{k} + \sum_{j \neq k} X_{j}\right)$ where \mathbf{X}_{k}^{a} is antimonotonic with $\sum_{j \neq k} X_{j}$

Model Risk

Aggregate risk with minimum variance Step 1: First column

$$\begin{bmatrix}
6 & 6 & 4 \\
4 & 3 & 2 \\
1 & 1 & 1 \\
0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 6 & 4 \\
1 & 3 & 2 \\
4 & 1 & 1 \\
6 & 0 & 0
\end{bmatrix}$$
becomes
$$\begin{bmatrix}
0 & 6 & 4 \\
1 & 3 & 2 \\
4 & 1 & 1 \\
6 & 0 & 0
\end{bmatrix}$$

Aggregate risk with minimum variance

Aggregate risk with minimum variance

Each column is antimonotonic with the sum of the others:

Aggregate risk with minimum variance

Each column is antimonotonic with the sum of the others:

$$\begin{bmatrix} \mathbf{0} & \mathbf{3} & \mathbf{4} \\ \mathbf{1} & \mathbf{6} & \mathbf{0} \\ \mathbf{4} & \mathbf{1} & \mathbf{2} \\ \mathbf{6} & \mathbf{0} & \mathbf{1} \end{bmatrix} \qquad S_N = \begin{bmatrix} 7 \\ 7 \\ 7 \\ 7 \end{bmatrix}$$

The minimum variance of the sum is equal to 0! (ideal case of a constant sum (complete mixability, see Wang and Wang (2011))

Bounds on variance

Analytical Bounds on Standard Deviation

Consider d risks X_i with standard deviation σ_i

$$0 \leqslant std(X_1 + X_2 + \dots + X_d) \leqslant \sigma_1 + \sigma_2 + \dots + \sigma_d$$

Bounds on variance

Analytical Bounds on Standard Deviation

Consider d risks X_i with standard deviation σ_i

$$0 \leq std(X_1 + X_2 + ... + X_d) \leq \sigma_1 + \sigma_2 + ... + \sigma_d$$

Example with 20 standard normal N(0,1)

$$0 \leqslant std(X_1 + X_2 + ... + X_{20}) \leqslant 20$$

and in this case, both bounds are sharp but too wide for practical use!

Our idea: Incorporate information on dependence.

Model Risk

Illustration with 2 risks with marginals N(0,1)

Illustration with 2 risks with marginals N(0,1)

Assumption: Independence on
$$\mathcal{F} = \bigcap_{k=1}^2 \left\{ q_\beta \leqslant X_k \leqslant q_{1-\beta} \right\}$$

15

Model Risk Bounds on variance Dependence Info. VaR VaR bounds Dependence Info. Constraint Conclusions

$$\mathcal{F}_1 = \bigcap_{k=1}^2 \left\{ q_\beta \leqslant X_k \leqslant q_{1-\beta} \right\}$$

$$\mathcal{F}_1 = \bigcap_{k=1}^2 \left\{ q_\beta \leqslant X_k \leqslant q_{1-\beta} \right\}$$

$$\mathcal{F} = \bigcup_{k=1}^{2} \left\{ X_k > q_p \right\} \bigcup \mathcal{F}_1$$

$$\mathcal{F}_1$$
 =contour of MVN at β

$$\mathcal{F} = \bigcup_{k=1}^{2} \left\{ X_k > q_p \right\} \bigcup \mathcal{F}_1$$

Model Risk

Our assumptions on the cdf of $(X_1, X_2, ..., X_d)$

Dependence Info.

 $\mathcal{F} \subset \mathbb{R}^d$ ("trusted" or "fixed" area) $\mathcal{U} = \mathbb{R}^d \setminus \mathcal{F}$ ("untrusted").

We assume that we know:

- (i) the marginal distribution F_i of X_i on \mathbb{R} for i=1,2,...,d,
- (ii) the distribution of $(X_1, X_2, ..., X_d) \mid \{(X_1, X_2, ..., X_d) \in \mathcal{F}\}.$
- (iii) $P((X_1, X_2, ..., X_d) \in \mathcal{F})$

Model Risk

Our assumptions on the cdf of $(X_1, X_2, ..., X_d)$

Dependence Info.

 $\mathcal{F} \subset \mathbb{R}^d$ ("trusted" or "fixed" area) $\mathcal{U} = \mathbb{R}^d \setminus \mathcal{F}$ ("untrusted").

We assume that we know:

- (i) the marginal distribution F_i of X_i on \mathbb{R} for i = 1, 2, ..., d,
- (ii) the distribution of $(X_1, X_2, ..., X_d) \mid \{(X_1, X_2, ..., X_d) \in \mathcal{F}\}.$
- (iii) $P((X_1, X_2, ..., X_d) \in \mathcal{F})$
 - ▶ When only marginals are known: $\mathcal{U} = \mathbb{R}^d$ and $\mathcal{F} = \emptyset$.
 - Our Goal: Find bounds on $var(S) := var(X_1 + ... + X_d)$ when $(X_1, ..., X_d)$ satisfy (i), (ii) and (iii).

Example:

N=8 observations, d=3 dimensions and 3 observations trusted ($\ell_f=3, p_f=3/8$)

$$\begin{bmatrix} 3 & 4 & 1 \\ 1 & 1 & 1 \\ 0 & 3 & 2 \\ 0 & 2 & 1 \\ 2 & 4 & 2 \\ 3 & 0 & 1 \\ 1 & 1 & 2 \\ 4 & 2 & 3 \\ \end{bmatrix}$$

$$S_N = egin{bmatrix} 8 \ 3 \ 5 \ 3 \ 8 \ 4 \ 4 \ 9 \end{bmatrix}$$

Dependence Info.

Example: N = 8, d = 3 with 3 observations trusted ($\ell_f = 3$) Maximum variance

$$M = \begin{bmatrix} 3 & 4 & 1 \\ 2 & 4 & 2 \\ 0 & 2 & 1 \\ 4 & 3 & 3 \\ 3 & 2 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \quad S_N^f = \begin{bmatrix} 8 \\ 8 \\ 3 \end{bmatrix}, \quad S_N^u = \begin{bmatrix} 10 \\ 7 \\ 4 \\ 3 \\ 1 \end{bmatrix}$$

The maximum variance is

$$\frac{1}{8}\left(\sum_{i=1}^3(s_i-\overline{s})^2+\sum_{i=1}^5(\widetilde{s}_i^c-\overline{s})^2\right)pprox 8.75$$
 with $\overline{s}=5.5$.

Example: N = 8, d = 3 with 3 observations trusted ($\ell_f = 3$) Minimum variance

Minimum variance obtained when S_N^u has smallest variance (ideally constant, "mixability")

$$M = \left[egin{array}{ccccc} 3 & 4 & 1 \ 2 & 4 & 2 \ 0 & 2 & 1 \ 1 & 1 & 3 \ 0 & 3 & 2 \ 1 & 2 & 2 \ 3 & 1 & 1 \ 4 & 0 & 1 \ \end{array}
ight], \quad S_N^f = \left[egin{array}{c} 8 \ 8 \ 3 \ \end{array}
ight], \quad S_N^u = \left[egin{array}{c} 5 \ 5 \ 5 \ 5 \ 5 \ \end{array}
ight]$$

The minimum variance is

$$\frac{1}{8} \left(\sum_{i=1}^{3} (s_i - \bar{s})^2 + \sum_{i=1}^{5} (\tilde{s}_i^m - \bar{s})^2 \right) \approx 2.5 \text{ with } \bar{s} = 5.5.$$

Model Risk

Model Risk

Example d = 20 risks N(0,1)

 \triangleright $(X_1,...,X_{20})$ independent N(0,1) on

$$\mathcal{F} := [q_{\beta}, q_{1-\beta}]^d \subset \mathbb{R}^d \qquad p_f = P((X_1, ..., X_{20}) \in \mathcal{F})$$

(for some $\beta \leq 50\%$) where q_{γ} : γ -quantile of N(0,1)

- $\beta = 0\%$: no uncertainty (20 independent N(0,1))
- $\beta = 50\%$: full uncertainty

	$\mathcal{U} = \emptyset$		$\mathcal{U} = \mathbb{R}^d$
$\mathcal{F} = [q_eta, q_{1-eta}]^d$	$\beta = 0\%$		$\beta = 50\%$
$\rho = 0$	4.47		(0, 20)

Model Risk

Example d = 20 risks N(0.1)

 \triangleright $(X_1,...,X_{20})$ independent N(0,1) on

$$\mathcal{F} := [q_{\beta}, q_{1-\beta}]^d \subset \mathbb{R}^d \qquad p_f = P((X_1, ..., X_{20}) \in \mathcal{F})$$

(for some $\beta \leq 50\%$) where q_{γ} : γ -quantile of N(0,1)

- $\beta = 0\%$: no uncertainty (20 independent N(0,1))
- $\beta = 50\%$: full uncertainty

Model risk on the volatility of a portfolio is reduced a lot by incorporating information on dependence!

Bounds on Variance

Bounds on the variance of $\sum_{i=1}^{d} X_i$

Let $(X_1, X_2, ..., X_d)$ that satisfies properties (i), (ii) and (iii) and let

$$\mathbb{I}:=\mathbb{1}_{(X_1,X_2,\ldots,X_d)\in\mathcal{F}},$$

 $Z_i \sim F_{X_i|(X_1,X_2,...,X_d) \in \mathcal{U}}$ are comonotonic and independent of \mathbb{I} for i=1,2,...,d. Then, with $S=\sum_{i=1}^d X_i$,

$$\operatorname{var}\left(\mathbb{I}S + (1 - \mathbb{I})\sum_{i=1}^{d} EZ_i\right) \leqslant \operatorname{var}\left(S\right) \leqslant \operatorname{var}\left(\mathbb{I}S + (1 - \mathbb{I})\sum_{i=1}^{d} Z_i\right)$$

Other Risk Measures

▶ Assess model risk for variance of a portfolio of risks with given marginals but partially known dependence. Same method applies to TVaR (expected Shortfall) or any risk measure that satisfies convex order (but not for Value-at-Risk).

definition: Convex order

X is smaller in convex order, $X \prec_{cx} Y$, if for all convex functions f

$$E[f(X)] \leq E[f(Y)]$$

- ▶ Next, let us study model risk on Value-at-Risk.
 - Maximum Value-at-Risk is not caused by the comonotonic scenario.
 - Maximum Value-at-Risk is achieved when the variance is minimum in the tail. The RA is then used in the tails only.
 - Bounds on Value-at-Risk at high confidence level stay wide even when the trusted area covers 98% of the space!

Setting

- Model uncertainty on the VaR of an aggregate portfolio: the sum of d individual dependent risks.
 - ▶ Value-at-Risk at level q of $S = X_1 + X_2 + ... + X_d$
 - "Fit" a multivariate distribution for $(X_1, X_2, ..., X_d)$ and compute $VaR_q(S)$
 - ▶ How about model risk? How wrong can we be?

$$VaR_{q,\mathcal{F}}^{+} = \sup \left\{ VaR_{q} \left(\sum_{i=1}^{d} X_{i} \right) \right\}, VaR_{q,\mathcal{F}}^{-} = \inf \left\{ VaR_{q} \left(\sum_{i=1}^{d} X_{i} \right) \right\}$$

where bounds are taken over all other random vectors $(X_1, X_2, ..., X_d)$ that "agree" with the available information

Definitions

• Value-at-Risk of X at level $q \in (0,1)$

$$VaR_q(X) = \inf \{ x \in \mathbb{R} \mid F_X(x) \geqslant q \}$$

<u>Tail Value-at-Risk</u> or <u>Expected Shortfall</u> of X

$$\mathsf{TVaR}_q(X) = rac{1}{1-q} \int_q^1 \mathsf{VaR}_u(X) \mathrm{d}u \qquad q \in (0,1)$$

Left Tail Value-at-Risk of X

$$LTVaR_q(X) = \frac{1}{q} \int_0^q VaR_u(X) du$$

First part works for all risk measures that satisfy convex order...
But not for Value-at-Risk.

 $ightharpoonup VaR_q$ is **not** maximized for the comonotonic scenario:

$$S^c = X_1^c + X_2^c + \dots + X_d^c$$

where all X_i^c are comonotonic.

▶ to maximize VaR_q, the idea is to change the comonotonic dependence such that the sum is constant in the tail

Bounds on Value-at-Risk

First part works for all risk measures that satisfy convex order... But not for Value-at-Risk.

 $ightharpoonup VaR_q$ is **not** maximized for the comonotonic scenario:

$$S^c = X_1^c + X_2^c + \dots + X_d^c$$

where all X_i^c are comonotonic.

▶ to maximize VaR_q, the idea is to change the comonotonic dependence such that the sum is constant in the tail

Let us illustrate the problem with two risks:

If X_1 and X_2 are Uniform (0,1) and comonotonic, then

$$VaR_a(S^c) = 2q$$

"Riskiest" Dependence Structure maximum VaR at level *q* in 2 dimensions

For that dependence structure (antimonotonic in the tail)

$$VaR_q(S^*) = 1 + q > VaR_q(S^c) = 2q$$

VaR at level q of the comonotonic sum w.r.t. q

fodel Risk Bounds on variance Dependence Info. VaR VaR bounds Dependence Info. Constraint Conclusions

VaR at level q of the comonotonic sum w.r.t. q

odel Risk Bounds on variance Dependence Info. VaR VaR bounds Dependence Info. Constraint Conclusions

Riskiest Dependence Structure VaR at level q

Analytical Unconstrained Bounds with $X_i \sim F_i$

$$A = LTVaR_q(S^c) \leqslant VaR_q[X_1 + X_2 + ... + X_n] \leqslant B = TVaR_q(S^c)$$

Carole Bernard

odel Risk Bounds on variance Dependence Info. VaR VaR bounds Dependence Info. Constraint Conclusions

Illustration (1/3)

odel Risk Bounds on variance Dependence Info. VaR VaR bounds Dependence Info. Constraint Conclusions

Illustration (2/3)

lodel Risk Bounds on variance Dependence Info. VaR VaR bounds Dependence Info. Constraint Conclusions

Illustration (3/3)

Numerical Results, 20 risks N(0,1)

When marginal distributions are given,

- What is the maximum Value-at-Risk?
- What is the minimum Value-at-Risk?
- A portfolio of 20 risks normally distributed N(0,1). Bounds on VaR_q (by the rearrangement algorithm applied on each tail)

$$\begin{array}{c|c} q = 95\% & (-2.17, 41.3) \\ \hline q = 99.95\% & (-0.035, 71.1) \\ \hline \end{array}$$

- ▶ More examples in Embrechts, Puccetti, and Rüschendorf (2013): "Model uncertainty and VaR aggregation," Journal of Banking and Finance
- ▶ Very wide bounds
- ► All dependence information ignored

Our idea: add information on dependence from a fitted model where data is available...

Illustration with 2 risks with marginals N(0,1)

Illustration with 2 risks with marginals N(0,1)

Assumption: Independence on
$$\mathcal{F} = \bigcap_{k=1}^{2} \{q_{\beta} \leqslant X_{k} \leqslant q_{1-\beta}\}$$

Our assumptions on the cdf of $(X_1, X_2, ..., X_d)$

 $\mathcal{F} \subset \mathbb{R}^d$ ("trusted" or "fixed" area) $\mathcal{U} = \mathbb{R}^d \setminus \mathcal{F}$ ("untrusted").

We assume that we know:

- (i) the marginal distribution F_i of X_i on \mathbb{R} for i = 1, 2, ..., d,
- (ii) the distribution of $(X_1, X_2, ..., X_d) \mid \{(X_1, X_2, ..., X_d) \in \mathcal{F}\}.$
- (iii) $P((X_1, X_2, ..., X_d) \in \mathcal{F})$
 - **Our Goal:** Find bounds on $VaR_q(S) := VaR_q(X_1 + ... + X_d)$ when $(X_1, ..., X_d)$ satisfy (i), (ii) and (iii).

Our assumptions on the cdf of $(X_1, X_2, ..., X_d)$

 $\mathcal{F} \subset \mathbb{R}^d$ ("trusted" or "fixed" area) $\mathcal{U} = \mathbb{R}^d \setminus \mathcal{F}$ ("untrusted").

We assume that we know:

- (i) the marginal distribution F_i of X_i on \mathbb{R} for i = 1, 2, ..., d,
- (ii) the distribution of $(X_1, X_2, ..., X_d) \mid \{(X_1, X_2, ..., X_d) \in \mathcal{F}\}.$
- (iii) $P((X_1, X_2, ..., X_d) \in \mathcal{F})$
 - Our Goal: Find bounds on $VaR_q(S) := VaR_q(X_1 + ... + X_d)$ when $(X_1, ..., X_d)$ satisfy (i), (ii) and (iii).

In the paper entitled "A New Approach to Assessing Model Risk in High Dimensions" with S. Vanduffel,

- we adapt the rearrangement algorithm to solve for sharp bounds on VaR in the above case.
- we provide theoretical expressions as the VaR of a mixture for the lower and the upper bounds.

Numerical Results, 20 independent N(0,1) on $\mathcal{F}=[q_{\beta},q_{1-\beta}]^d$

	$\mathcal{U} = \emptyset$	$\mathcal{U}=\mathbb{R}^d$
	$\beta = 0\%$	$\beta = 0.5$
q=95%	12.5	(-2.17, 41.3)
q=99.95%	25.1	(-0.035, 71.1)

• $\mathcal{U} = \emptyset$: 20 independent standard normal variables.

$$VaR_{95\%} = 12.5$$
 $VaR_{99.95\%} = 25.1$

Numerical Results, 20 independent N(0,1) on $\mathcal{F} = [q_{\beta}, q_{1-\beta}]^d$

	$\mathcal{U} = \emptyset$	$p_f \approx 98\%$	$p_f \approx 82\%$	$\mathcal{U}=\mathbb{R}^d$
	$\beta = 0\%$	$\beta = 0.05\%$	$\beta = 0.5\%$	$\beta = 0.5$
q=95%	12.5	(12.2 , 13.3)	(10.7 , 27.7)	(-2.17, 41.3)
q=99.95%	25.1	(24.2 , 71.1)	(21.5,71.1)	(-0.035, 71.1)

• $\mathcal{U} = \emptyset$: 20 independent standard normal variables.

$$VaR_{95\%} = 12.5 \quad VaR_{99.95\%} = 25.1$$

- ► The risk for an underestimation of VaR is increasing in the probability level used to assess the VaR.
- For VaR at high probability levels (q = 99.95%), despite all the added information on dependence, the bounds are still wide!

With Pareto risks

Consider d = 20 risks distributed as Pareto with parameter $\theta = 3$.

ullet Assume we trust the independence conditional on being in \mathcal{F}_1

$$\mathcal{F}_1 = \bigcap_{k=1}^d \left\{ q_\beta \leqslant X_k \leqslant q_{1-\beta} \right\}$$

where
$$q_{\beta} = (1 - \beta)^{-1/\theta} - 1$$
.

Comonotonic estimates of Value-at-Risk

$$VaR_{95\%}(S^c) \approx 34.3, VaR_{99.95\%}(S^c) \approx 232$$

	$\mathcal{U} = \emptyset$			$\mathcal{U}=\mathbb{R}^d$
\mathcal{F}_1	$\beta = 0\%$	$\beta = 0.05\%$	eta=0.5%	$\beta = 0.5$
α =95%	16.6	(16,18.4)	(13.8 , 37.4)	(7.29,61.4)
α =99.95%	43.5	(26.5 , 359)	(20.5 , 359)	(9.83 , 359)

Incorporating Expert's Judgements

Consider d = 20 risks distributed as Pareto $\theta = 3$.

ullet Assume comonotonicity conditional on being in \mathcal{F}_2

$$\mathcal{F}_2 = \bigcup_{k=1}^d \left\{ X_k > q_p \right\}$$

Comonotonic estimates of Value-at-Risk

$$VaR_{95\%}(S^c) \approx 34.3, VaR_{99.95\%}(S^c) \approx 232$$

	$\mathcal{U} = \emptyset$			
\mathcal{F}_2	(Model)	p = 99.5%	p = 99.9%	p = 99.95%
α =95%	16.6	(8.35,50)	(7.47,56.7)	(7.38, 58.3)
α =99.95%	43.5	(232,232)	(232 , 232)	(180 , 232)

Comparison

Analytical formulas for constrained VaR bounds

Comonotonicity when one of the risks is large $\mathcal{F}_2 = \bigcup_{k=1}^d \left\{ X_k > q_p \right\}$

	$\mathcal{U} = \emptyset$			
\mathcal{F}_2	(Model)	p = 99.5%	p = 99.9%	p = 99.95%
α =95%	16.6	(8.35,50)	(7.47,56.7)	(7.38, 58.3)
α =99.95%	43.5	(232 , 232)	(232 , 232)	(180,232)

Extension with a variance constraint with L. Rüschendorf and S. Vanduffel

Problem

$$M := \sup \operatorname{VaR}_q [X_1 + X_2 + ... + X_n],$$

subject to $X_j \sim F_j, \operatorname{var}(X_1 + X_2 + ... + X_n) \leq s^2$

- easy-to-compute upper and lower bounds for the portfolio VaR with given marginal and possibly a maximum variance of the sum is given.
- a practical algorithm to (approximate) sharp VaR bounds.
- Examples illustrate that the algorithm gives rise to VaR bounds that are usually close to the simple theoretical bounds.
- A constraint on the variance can **significantly** tighten the bounds without the variance constraint (unconstrained case).

Analytical result

A and B: unconstrained bounds on Value-at-Risk, $\mu = E[S]$.

Constrained Bounds with $X_i \sim F_i$ and variance $\leqslant s^2$

$$a = \max\left(A, \mu - s\sqrt{\frac{1-q}{q}}\right) \leqslant \operatorname{VaR}_q\left[X_1 + X_2 + \dots + X_n\right]$$

$$\leqslant b = \min\left(B, \ \mu + s\sqrt{\frac{q}{1-q}}\right)$$

- If the variance s^2 is not "too large" (i.e. when $s^2 \le q(A \mu)^2 + (1 q)(B \mu)^2$), then b < B.
- The "target" distribution for the sum: a two-point cdf that takes two values a and b. We can write

$$X_1 + X_2 + ... + X_n - S = 0$$

and apply the standard RA.

Model Risk Bounds on variance Dependence Info. VaR VaR bounds Dependence Info. Constraint Conclusions

Extended RA

Rearrange now within all columns such that all sums becomes close to zero

Conclusions (1/2)

We have shown that

- Maximum Value-at-Risk is not caused by the comonotonic scenario.
- Maximum Value-at-Risk is achieved when the variance is minimum in the tail. The RA is then used in the tails only.
- Bounds on Value-at-Risk at high confidence level stay wide even if the multivariate dependence is known in 98% of the space!

Conclusions (2/2)

- Assess model risk with partial information and given marginals (Monte Carlo from fitted model or non-parametrically)
- ▶ Design algorithms for bounds on variance, TVaR and VaR and many more risk measures.
- ► Challenges:
 - How to choose the trusted area $\mathcal F$ optimally?
 - Re-discretizing using the fitted marginal \hat{f}_i to increase N
 - Amplify the tails of the marginals by re-discretizing with a probability distortion
- ▶ Additional information on dependence can be incorporated
 - expert opinions on the dependence under some scenarios (amounts to fix the dependence in some areas).
 - variance of the sum (work with Rüschendorf and Vanduffel).
 - higher moments (work with Denuit and Vanduffel)

Acknowledgments

- BNP Paribas Fortis Chair in Banking.
- Research project on "Risk Aggregation and Diversification" with Steven Vanduffel for the Canadian Institute of Actuaries.
- Humboldt Research Foundation.
- Project on "Systemic Risk" funded by the Global Risk Institute in Financial Services.
- Natural Sciences and Engineering Research Council of Canada
- Society of Actuaries Center of Actuarial Excellence Research Grant

References

- ▶ Bernard, C., Vanduffel S. (2014): "A new approach to assessing model risk in high dimensions", available on SSRN.
- Bernard, C., M. Denuit, and S. Vanduffel (2014): "Measuring Portfolio Risk under Partial Dependence Information," Working Paper.
- Bernard, C., X. Jiang, and R. Wang (2014): "Risk Aggregation with Dependence Uncertainty," *Insurance: Mathematics and Economics*.
- Bernard, C., L. Rüschendorf, and S. Vanduffel (2014): "VaR Bounds with a Variance Constraint," Working Paper.
- Embrechts, P., G. Puccetti, and L. Rüschendorf (2013): "Model uncertainty and VaR aggregation," Journal of Banking & Finance.
- Puccetti, G., and L. Rüschendorf (2012): "Computation of sharp bounds on the distribution of a function of dependent risks," *Journal of Computational and Applied Mathematics*, 236(7), 1833–1840.
- Wang, B., and R. Wang (2011): "The complete mixability and convex minimization problems with monotone marginal densities," *Journal of Multivariate Analysis*, 102(10), 1344–1360.
- ▶ Wang, B., and R. Wang (2014): "Joint Mixability," Working paper.

Bounds on VaR

Theorem (Constrained VaR Bounds for $\sum_{i=1}^{d} X_i$)

Assume $(X_1, X_2, ..., X_d)$ satisfies properties (i), (ii) and (iii), and let $(Z_1, Z_2, ..., Z_d)$, \mathbb{I} and U ($\sim U(0,1)$ independent of \mathbb{I}) as defined before. Define the variables L_i and H_i as

$$L_{i} = LTVaR_{U}(Z_{i})$$
 and $H_{i} = TVaR_{U}(Z_{i})$

and let

Model Risk

$$m_p := VaR_p \left(\mathbb{I} \sum_{i=1}^d X_i + (1 - \mathbb{I}) \sum_{i=1}^d L_i \right)$$
 $M_p := VaR_p \left(\mathbb{I} \sum_{i=1}^d X_i + (1 - \mathbb{I}) \sum_{i=1}^d H_i \right)$

Bounds on the Value-at-Risk are $m_p \leqslant VaR_p\left(\sum_{i=1}^d X_i\right) \leqslant M_p$.

Value-at-Risk of a Mixture

Lemma

Consider a sum $S = \mathbb{I}X + (1 - \mathbb{I})Y$, where \mathbb{I} is a Bernoulli distributed random variable with parameter p_f and where the components X and Y are independent of \mathbb{I} . Define $\alpha_* \in [0,1]$ by

$$lpha_* := \inf \left\{ lpha \in (0,1) \mid \exists eta \in (0,1) \left\{ egin{array}{l} p_f lpha + (1-p_f)eta = p \ VaR_lpha(X) \geqslant VaR_eta(Y) \end{array}
ight\}$$
 and let $eta_* = rac{p-p_f lpha_*}{1-p_f} \in [0,1].$ Then, for $p \in (0,1)$, $VaR_p(S) = \max \left\{ VaR_{lpha_*}(X), VaR_{eta_*}(Y) \right\}$

Applying this lemma, one can prove a more convenient expression to compute the VaR bounds.

Let us define $T:=F_{\sum_i X_i|(X_1,X_2,...,X_d)\in\mathcal{F}}^{-1}(U).$

Theorem (Alternative formulation of the upper bound for VaR)

Assume $(X_1, X_2, ..., X_d)$ satisfies properties (i), (ii) and (iii), and let $(Z_1, Z_2, ..., Z_d)$ and \mathbb{I} as defined before.

With
$$\alpha_1 = \max\left\{0, \frac{p+p_f-1}{p_f}\right\}$$
 and $\alpha_2 = \min\left\{1, \frac{p}{p_f}\right\}$, $\alpha_* := \inf\left\{\alpha \in (\alpha_1, \alpha_2) \mid VaR_{\alpha}(T) \geqslant TVaR_{\frac{p-p_f\alpha}{1-p_f}}\left(\sum_{i=1}^d Z_i\right)\right\}$ When $\frac{p+p_f-1}{p_f} < \alpha_* < \frac{p}{p_f}$,

$$M_p = TVaR_{\frac{p-p_f\alpha_*}{1-p_f}} \left(\sum_{i=1}^d Z_i\right)$$

The lower bound m_p is obtained by replacing "TVaR" by "LTVaR".

Algorithm to approximate sharp bounds

- A detailed algorithm to approximate sharp bounds is given in the paper.
- An application to a portfolio of stocks using market data is also fully developed.

Back to presentation